Replay debugging

Author:

Honarmand Nima1,Torrellas Josep1

Affiliation:

1. University of Illinois at Urbana-Champaign

Abstract

Hardware-assisted Record and Deterministic Replay (RnR) of programs has been proposed as a primitive for debugging hard-to-repeat software bugs. However, simply providing support for repeatedly stumbling on the same bug does not help diagnose it. For bug diagnosis, developers typically want to modify the code, e.g., by creating and operating on new variables, or printing state. Unfortunately, this renders the RnR log inconsistent and makes Replay Debugging (i.e., debugging while using an RnR log for replay) dicey at best This paper presents rdb, the first scheme for replay debugging that guarantees exact replay. rdb relies on two mechanisms. The first one is compiler support to split the instrumented application into two executables: one that is identical to the original program binary, and another that encapsulates all the added debug code. The second mechanism is a runtime infrastructure that replays the application and, without affecting it in any way, invokes the appropriate debug code at the appropriate locations. We describe an implementation of rdb based on LLVM and Pin, and show an example of how rdb's replay debugging helps diagnose a real bug

Funder

University of Illinois at Urbana-Champaign

Division of Computing and Communication Foundations

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. "GDB: The GNU Project Debugger " http://www.gnu.org/software/gdb/. "GDB: The GNU Project Debugger " http://www.gnu.org/software/gdb/.

2. "The LLVM Compiler Infrastructure " http://llvm.org/. "The LLVM Compiler Infrastructure " http://llvm.org/.

3. ODR

4. Karma

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vidi: Record Replay for Reconfigurable Hardware;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

2. Execution reconstruction: harnessing failure reoccurrences for failure reproduction;Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3