Eliminating redundant fragment shader executions on a mobile GPU via hardware memoization

Author:

Arnau Jose-Maria1,Parcerisa Joan-Manuel1,Xekalakis Polychronis2

Affiliation:

1. Universitat Politecnica de Catalunya

2. Intel Corporation

Abstract

Redundancy is at the heart of graphical applications. In fact, generating an animation typically involves the succession of extremely similar images. In terms of rendering these images, this behavior translates into the creation of many fragment programs with the exact same input data. We have measured this fragment redundancy for a set of commercial Android applications, and found that more than 40% of the fragments used in a frame have been already computed in a prior frame. In this paper we try to exploit this redundancy, using fragment memoization. Unfortunately, this is not an easy task as most of the redundancy exists across frames, rendering most HW based schemes unfeasible. We thus first take a step back and try to analyze the temporal locality of the redundant fragments, their complexity, and the number of inputs typically seen in fragment programs. The result of our analysis is a task level memoization scheme, that easily outperforms the current state-of-the-art in low power GPUs More specifically, our experimental results show that our scheme is able to remove 59.7% of the redundant fragment computations on average. This materializes to a significant speedup of 17.6% on average, while also improving the overall energy efficiency by 8.9% on average.

Funder

Ministerio de Economía y Competitividad

Intel Corporation

Generalitat de Catalunya

Publisher

Association for Computing Machinery (ACM)

Reference34 articles.

1. "Qualcomm Adreno 320 " http://www.anandtech.com/show/6112/qualcomms-quadcore-snapdragon-s4-apq8064adreno-320-performance-preview. "Qualcomm Adreno 320 " http://www.anandtech.com/show/6112/qualcomms-quadcore-snapdragon-s4-apq8064adreno-320-performance-preview.

2. Performance evaluation of cache replacement policies for the SPEC CPU2000 benchmark suite

3. On the potential of tolerant region reuse for multimedia applications

4. Dynamic Tolerance Region Computing for Multimedia

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization strategies for GPUs: an overview of architectural approaches;International Journal of Parallel, Emergent and Distributed Systems;2023-02-05

2. ALAMNI: Adaptive LookAside Memory based Near-Memory Inference Engine for Eliminating Multiplications in Real-Time;IEEE Transactions on Computers;2022

3. Hb-Retriple: Mobile Rendering Optimization Based on Efficient History Reusing;SSRN Electronic Journal;2022

4. A methodology and framework for software memoization of functions;Proceedings of the 18th ACM International Conference on Computing Frontiers;2021-05-11

5. Real-time rendering on a power budget;ACM Transactions on Graphics;2016-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3