SC2

Author:

Arelakis Angelos1,Stenstrom Per1

Affiliation:

1. Chalmers University of Technology, Gothenburg, Sweden

Abstract

Low utilization of on-chip cache capacity limits performance and wastes energy because of the long latency, limited bandwidth, and energy consumption associated with off-chip memory accesses. Value replication is an important source of low capacity utilization. While prior cache compression techniques manage to code frequent values densely, they trade off a high compression ratio for low decompression latency, thus missing opportunities to utilize capacity more effectively. This paper presents, for the first time, a detailed designspace exploration of caches that utilize statistical compression. We show that more aggressive approaches like Huffman coding, which have been neglected in the past due to the high processing overhead for (de)compression, are suitable techniques for caches and memory. Based on our key observation that value locality varies little over time and across applications, we first demonstrate that the overhead of statistics acquisition for code generation is low because new encodings are needed rarely, making it possible to off-load it to software routines. We then show that the high compression ratio obtained by Huffman-coding makes it possible to utilize the performance benefits of 4X larger last-level caches with about 50% lower power consumption than such larger caches

Funder

Vetenskapsrädet

Swedish Foundation for Strategic Research

Publisher

Association for Computing Machinery (ACM)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selective Memory Compression for GPU Memory Oversubscription Management;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Dictionary Based Cache Line Compression;Proceedings of the 16th ACM Workshop on Hot Topics in Storage and File Systems;2024-07-08

3. Beyond Compression Ratio: A Throughput Analysis of Memory Compression Techniques for GPUs;2023 IEEE 41st International Conference on Computer Design (ICCD);2023-11-06

4. DaeMon: Architectural Support for Efficient Data Movement in Fully Disaggregated Systems;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2023-02-27

5. Multi-Prediction Compression: An Efficient and Scalable Memory Compression Framework for GP-GPU;IEEE Computer Architecture Letters;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3