1. U-net: Convolutional networks for biomedical image segmentation;Ronneberger O.;[Medical Image Computing and Computer-Assisted Intervention (MICCAI)],2015
2. Unet++: A nested u-net architecture for medical image segmentation;Zhou Z.;[Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA)],2018
3. Knowledge Distillation from Cross Teaching Teachers for Efficient Semi-supervised Abdominal Organ Segmentation in CT
4. Dosovitskiy , A. , Beyer , L. , Kolesnikov , A. , Weissenborn , D. , Zhai , X. , Unterthiner , T. , Dehghani , M. , Minderer , M. , Heigold , G. , Gelly , S. , Uszkoreit , J. , and Houlsby , N ., “ An image is worth 16x16 words: Transformers for image recognition at scale,” in [Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)], 10687–10698 ( 2021 ). Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N., “An image is worth 16x16 words: Transformers for image recognition at scale,” in [Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)], 10687–10698 (2021).
5. An Uncertainty-Aware Transformer for MRI Cardiac Semantic Segmentation via Mean Teachers