RealFill: Reference-Driven Generation for Authentic Image Completion

Author:

Tang Luming1ORCID,Ruiz Nataniel2ORCID,Chu Qinghao3ORCID,Li Yuanzhen2ORCID,Holynski Aleksander4ORCID,Jacobs David E.3ORCID,Hariharan Bharath1ORCID,Pritch Yael5ORCID,Wadhwa Neal6ORCID,Aberman Kfir7ORCID,Rubinstein Michael2ORCID

Affiliation:

1. Cornell University, Ithaca, United States of America

2. Google Research, Boston, United States of America

3. Google Research, Mountain View, United States of America

4. Google Research, San Francisco, United States of America

5. Google Research, Tel Aviv, Israel

6. Google Research, New York, United States of America

7. Snap Research, Palo Alto, United States of America

Abstract

Recent advances in generative imagery have brought forth outpainting and inpainting models that can produce high-quality, plausible image content in unknown regions. However, the content these models hallucinate is necessarily inauthentic, since they are unaware of the true scene. In this work, we propose RealFill, a novel generative approach for image completion that fills in missing regions of an image with the content that should have been there. RealFill is a generative inpainting model that is personalized using only a few reference images of a scene. These reference images do not have to be aligned with the target image, and can be taken with drastically varying viewpoints, lighting conditions, camera apertures, or image styles. Once personalized, RealFill is able to complete a target image with visually compelling contents that are faithful to the original scene. We evaluate RealFill on a new image completion benchmark that covers a set of diverse and challenging scenarios, and find that it outperforms existing approaches by a large margin. Project page: https://realfill.github.io.

Funder

NSF IIS

Publisher

Association for Computing Machinery (ACM)

Reference57 articles.

1. Adobe Inc. 2023. Adobe Photoshop. https://www.adobe.com/products/photoshop.html

2. Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. 2023. Break-A-Scene: Extracting Multiple Concepts from a Single Image. ArXiv preprint abs/2305.16311 (2023). https://arxiv.org/abs/2305.16311

3. PatchMatch

4. Image inpainting

5. InstructPix2Pix: Learning to Follow Image Editing Instructions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3