Experiments with list ranking for explicit multi-threaded (XMT) instruction parallelism

Author:

Vishkin Dascal1,Vishkin Uzi1

Affiliation:

1. Univ. of Maryland, College Park

Abstract

Algorithms for the problem of list ranking are empirically studied with respect to the Explicit Multi-Threaded (XMT) platform for instruction-level parallelism (ILP). The main goal of this study is to understand the differences between XMT and more traditional parallel computing implementation platforms/models as they pertain to the well studied list ranking problem. The main two findings are: (i) good speedups for much smaller inputs are possible and (ii) in part, the first finding is based on a new variant of a 1984 algorithm, called the No-Cut algorithm. The paper incorporates analytic (non-asymptotic) performance analysis into experimental performance analysis for relatively small inputs. This provides an interesting example where experimental research and theoretical analysis complement one another. Explicit Multi-Threading (XMT) is a fine-grained computation framework introduced in our SPAA'98 paper. Building on some key ideas of parallel computing, XMT covers the spectrum from algorithms through architecture to implementation; the main implementation related innovation in XMT was through the incorporation of low-overhead hardware and software mechanisms (for more effective fine-grained parallelism). The reader is referred to that paper for detail on these mechanisms. The XMT platform aims at faster single-task completion time by way of ILP.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3