Predicting User Posting Activities in Online Health Communities with Deep Learning

Author:

Wang Xiangyu1,Zhao Kang1ORCID,Zhou Xun1,Street Nick1

Affiliation:

1. University of Iowa, Iowa City, IA

Abstract

Online health communities (OHCs) represent a great source of social support for patients and their caregivers. Better predictions of user activities in OHCs can help improve user engagement and retention, which are important to manage and sustain a successful OHC. This article proposes a general framework to predict OHC user posting activities. Deep learning methods are adopted to learn from users’ temporal trajectories in both the volumes and content of posts published over time. Experiments based on data from a popular OHC for cancer survivors demonstrate that the proposed approach can improve the performance of user activity predictions. In addition, several topics of users’ posts are found to have strong impact on predicting users’ activities in the OHC.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3