Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study
Author:
Affiliation:
1. Tianjin University, Tianjin, China
2. Fudan University, Shanghai, China
3. Singapore Management University, Singapore, Singapore
4. Nanyang Technological University, Singapore, Singapore
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3597503.3623306
Reference45 articles.
1. Fatih Kadir Akin. 2023. Awesome Chatgpt Prompts. https://github.com/f/awesome-chatgpt-prompts.
2. Learning Autocompletion from Real-World Datasets
3. Impact of Peer Code Review on Peer Impression Formation: A Survey
4. Characteristics of Useful Code Reviews: An Empirical Study at Microsoft
5. Tom B. Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs.CL]
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluating the quality of student-generated content in learnersourcing: A large language model based approach;Education and Information Technologies;2024-07-17
2. Generative AI-Enabled Conversational Interaction to Support Self-Directed Learning Experiences in Transversal Computational Thinking;ACM Conversational User Interfaces 2024;2024-07-08
3. On the Use of ChatGPT for Code Review: Do Developers Like Reviews By ChatGPT?;Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering;2024-06-18
4. Research of Applicability of Natural Language Processing Models to the Task of Analyzing Technical Tasks and Specifications for Software Development;2024 XXVII International Conference on Soft Computing and Measurements (SCM);2024-05-22
5. CYCLE: Learning to Self-Refine the Code Generation;Proceedings of the ACM on Programming Languages;2024-04-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3