1. Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, and Leandro von Werra. 2023. Santa-Coder: don't reach for the stars!. In Deep Learning for Code Workshop (DL4C).
2. Iain Barclay, Alun Preece, Ian Taylor, Swapna Krishnakumar Radha, and Jarek Nabrzyski. 2022. Providing assurance and scrutability on shared data and machine learning models with verifiable credentials. Concurrency and Computation: Practice and Experience (2022), e6997.
3. Iain Barclay, Alun Preece, Ian Taylor, and Dinesh Verma. 2019. Towards trace-ability in data ecosystems using a bill of materials model. arXiv preprint arXiv:1904.04253 (2019).
4. Tingting Bi, Boming Xia, Zhenchang Xing, Qinghua Lu, and Liming Zhu. 2023. On the Way to SBOMs: Investigating Design Issues and Solutions in Practice. arXiv preprint arXiv:2304.13261 (2023).
5. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33 (2020) 1877--1901.