Performance effects of architectural complexity in the Intel 432

Author:

Colwell Robert P.1,Gehringer Edward F.2,Jensen E. Douglas3

Affiliation:

1. Multiflow Computer, Inc., 175 N. Main St., Branford, CT

2. Department of Electrical & Computer Engineering, Department of Computer Science, North Carolina State University, Raleigh, NC

3. Kendall Square Research Corp., 1 Kendall Square, Cambridge, MA

Abstract

The Intel 432 is noteworthy as an architecture incorporating a large amount of functionality that most other systems perform by software. It has, in effect, “migrated” this functionality from the software into the microcode and hardware. The benefits of functional migration have recently been a subject of intense controversy, with critics claiming that a complex architecture is inherently less efficient than a simple architecture with good software support. This paper examines the performance impact of the incorporation of several kinds of functionality into the Intel 432. Among these are the addressing structure, the caches, instruction alignment, the buses, and the way that garbage collection is handled. A set of several benchmarks is used to quantify the performance effect of each of these decisions. The results indicate that the 432 could have been speeded up very significantly if a small number of implementation decisions had been made differently, and if incrementally better technology had been used in its construction. Even with these modifications, however, the 432 would still have only one-fourth to one times the speed of its contemporaries. These figures may represent the real cost of the 432's style of object-based programming environment.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber defense through hardware security;Disruptive Technologies in Information Sciences;2018-05-09

2. Security tag computation and propagation in OSFA;Cyber Sensing 2018;2018-05-03

3. Password systems: Design and implementation;Computers & Electrical Engineering;2015-10

4. Revisiting virtual memory for high performance computing on manycore architectures;Proceedings of the 4th International Workshop on Runtime and Operating Systems for Supercomputers - ROSS '14;2014

5. Configurable fine-grain protection for multicore processor virtualization;ACM SIGARCH Computer Architecture News;2012-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3