Algorithm 1010

Author:

Orellana Alberto Giacomo1,Michele Cristiano De1ORCID

Affiliation:

1. Dipartimento di Fisica, “Sapienza” Università di Roma, Rome, Italy

Abstract

Aiming to provide a very accurate, efficient, and robust quartic equation solver for physical applications, we have proposed an algorithm that builds on the previous works of P. Strobach and S. L. Shmakov. It is based on the decomposition of the quartic polynomial into two quadratics, whose coefficients are first accurately estimated by handling carefully numerical errors and afterward refined through the use of the Newton-Raphson method. Our algorithm is very accurate in comparison with other state-of-the-art solvers that can be found in the literature, but (most importantly) it turns out to be very efficient according to our timing tests. A crucial issue for us is the robustness of the algorithm, i.e., its ability to cope with the detrimental effect of round-off errors, no matter what set of quartic coefficients is provided in a practical application. In this respect, we extensively tested our algorithm in comparison to other quartic equation solvers both by considering specific extreme cases and by carrying out a statistical analysis over a very large set of quartics. Our algorithm has also been heavily tested in a physical application, i.e., simulations of hard cylinders, where it proved its absolute reliability as well as its efficiency.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3