Machine and Deep Learning Implementations for Heritage Building Information Modelling: A Critical Review of Theoretical and Applied Research

Author:

Gil Aleksander1ORCID,Arayici Yusuf1ORCID,Kumar Bimal2ORCID,Laing Richard1ORCID

Affiliation:

1. Architecture and Built Environment, Northumbria University, Newcastle upon Tyne, United Kingdom

2. Department of Architecture, University of Strathclyde, Glasgow, United Kingdom

Abstract

Research domain and Problem: HBIM modelling from point cloud data has become a crucial research topic in the last decade since it is potentially considered as the central data model paving the way for the digital heritage practice beyond digitization. Reality Capture technologies such as terrestrial laser scanning, drone-mounted LiDAR sensors and photogrammetry enable the reality capture with a sub-millimetre accurate point cloud file that can be used as a reference file for Heritage Building Information Modelling (HBIM). However, HBIM modelling from the point cloud data of heritage buildings is mainly manual, error-prone, and time-consuming. Furthermore, image processing techniques are insufficient for classification and segmentation of point cloud data to speed up and enhance the current workflow for HBIM modelling. Due to the challenges and bottlenecks in the scan-to-HBIM process, which is commonly criticized as complex with its bespoke requirements, semantic segmentation of point clouds is gaining popularity in the literature. Research Aim and Methodology: Therefore, this paper aims to provide a thorough critical review of Machine Learning and Deep Learning methods for point cloud segmentation, classification, and BIM geometry automation for cultural heritage case study applications. Research findings: This paper files the challenges of HBIM practice and the opportunities for semantic point cloud segmentation found across academic literature in the last decade. Beyond definitions and basic occurrence statistics, this paper discusses the success rates and implementation challenges of machine and deep learning classification methods. Research value and contribution: This paper provides a holistic review of point cloud segmentation and its potential for further development and application in the Cultural Heritage sector. The critical analysis provides insight into the current state-of-the-art methods and advises on their suitability for HBIM projects. The review has identified highly original threads of research, which hold the potential to significantly influence practice and further applied research.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid modelling approach for information processing workflow in inter-cultural heritage projects;Archnet-IJAR: International Journal of Architectural Research;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3