Affiliation:
1. Research Institute for Discrete Mathematics, University of Bonn, Germany
Abstract
We consider the problem of constructing fast and small binary adder circuits. Among widely used adders, the Kogge-Stone adder is often considered the fastest, because it computes the carry bits for two
n
-bit numbers (where
n
is a power of two) with a depth of 2 log
2
n
logic gates, size 4
n
log
2
n
, and all fan-outs bounded by two. Fan-outs of more than two are disadvantageous in practice, because they lead to the insertion of repeaters for repowering the signal and additional depth in the physical implementation.
However, the depth bound of the Kogge-Stone adder is off by a factor of two from the lower bound of log
2
n
. Two separate constructions by Brent and Krapchenko achieve this lower bound asymptotically. Brent’s construction gives neither a bound on the fan-out nor the size, while Krapchenko’s adder has linear size, but can have up to linear fan-out. With a fan-out bound of two, neither construction achieves a depth of less than 2 log
2
n
.
In a further approach, Brent and Kung proposed an adder with linear size and fan-out two but twice the depth of the Kogge-Stone adder.
These results are 33–43 years old and no substantial theoretical improvement for has been made since then. In this article, we integrate the individual advantages of all previous adder circuits into a new family of full adders, the first to improve on the depth bound of 2 log
2
n
while maintaining a fan-out bound of two. Our adders achieve an asymptotically optimum logic gate depth of log
2
n
+
o
(log
2
n
) and linear size
O
(
n
).
Publisher
Association for Computing Machinery (ACM)
Subject
Mathematics (miscellaneous)
Reference22 articles.
1. On the Addition of Binary Numbers
2. A Regular Layout for Parallel Adders
3. Reducing Structural Bias in Technology Mapping
4. New bounds for parallel prefix circuits
5. S. B. Gashkov M. I. Grinchuk and I. S. Sergeev. 2008. On the construction of schemes for adders of small depth. Diskr. Anal. Issledov. Operat. Ser. 1 14 1 (2007) 27--44 (in Russian). {English translation in J. Appl. Industr. Math. 2 2 (2008 167--178). S. B. Gashkov M. I. Grinchuk and I. S. Sergeev. 2008. On the construction of schemes for adders of small depth. Diskr. Anal. Issledov. Operat. Ser. 1 14 1 (2007) 27--44 (in Russian). {English translation in J. Appl. Industr. Math. 2 2 (2008 167--178).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献