MATOG

Author:

Weber Nicolas1,Goesele Michael2

Affiliation:

1. Graduate School of Computational Engineering, TU Darmstadt,Rundeturmst, Darmstadt, Germany

2. TU Darmstadt, Rundeturmst, Darmstadt, Germany

Abstract

Optimal code performance is (besides correctness and accuracy) the most important objective in compute intensive applications. In many of these applications, Graphic Processing Units (GPUs) are used because of their high amount of compute power. However, caused by their massively parallel architecture, the code has to be specifically adjusted to the underlying hardware to achieve optimal performance and therefore has to be reoptimized for each new generation. In reality, this is usually not the case as productive code is normally at least several years old and nobody has the time to continuously adjust existing code to new hardware. In recent years more and more approaches have emerged that automatically tune the performance of applications toward the underlying hardware. In this article, we present the MATOG auto-tuner and its concepts. It abstracts the array memory access in CUDA applications and automatically optimizes the code according to the used GPUs. MATOG only requires few profiling runs to analyze even complex applications, while achieving significant speedups over non-optimized code, independent of the used GPU generation and without the need to manually tune the code.

Funder

“Excellence Initiative” of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universit´t Darmstadt

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A methodology for comparing optimization algorithms for auto-tuning;Future Generation Computer Systems;2024-10

2. Scalable Tuning of (OpenMP) GPU Applications via Kernel Record and Replay;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

3. Dependency Prediction of Long-Time Resource Uses in HPC Environment;IEEE Access;2023

4. Astute Approach to Handling Memory Layouts of Regular Data Structures;Algorithms and Architectures for Parallel Processing;2023

5. Prediction of multicore CPU performance through parallel data mining on public datasets;Displays;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3