1. The complexity of the pigeonhole principle
2. A. Atserias , M. Müller . Partially definable forcing and bounded arithmetic. Archive for Mathematical Logic 54 ( 1 ): 1-33 , 2015 . A. Atserias, M. Müller. Partially definable forcing and bounded arithmetic. Archive for Mathematical Logic 54 ( 1 ): 1-33, 2015.
3. P. Beame , R. Impagliazzo , J. Krajíček , T. Pitassi , P. Pudlák , A. Woods . Exponential lower bound for the pigeonhole principle (extended abstract) . Proceedings of the ACM Symposium on Theory of Computing (STOC'92) , ACM Press , pp. 200 - 220 , 1992 . P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, P. Pudlák, A. Woods. Exponential lower bound for the pigeonhole principle (extended abstract). Proceedings of the ACM Symposium on Theory of Computing (STOC'92), ACM Press, pp. 200-220, 1992.
4. A. Beckmann , S. R. Buss . Improved witnessing and local improvement principles for second-order bounded arithmetic. ACM Transactions on Computational Logic 15 ( 1 ) : Article 2 , 2014 . A. Beckmann, S. R. Buss. Improved witnessing and local improvement principles for second-order bounded arithmetic. ACM Transactions on Computational Logic 15 ( 1 ): Article 2, 2014.
5. S. R. Buss. Bounded Arithmetic. Bibliopolis Naples 1986. S. R. Buss. Bounded Arithmetic. Bibliopolis Naples 1986.