Affiliation:
1. Korea Advanced Institute of Science and Technology, Daejeon, Korea
2. IBM Thomas J. Watson Research Center, Yorktown Heights, NY
Abstract
This article presents an algorithm for integrated timing-driven latch placement and cloning. Given a circuit placement, the proposed algorithm relocates some latches while circuit timing is improved. Some latches are replicated to further improve the timing; the number of replicated latches along with their locations are automatically determined. After latch cloning, each of the replicated latches is set to drive a subset of the fanouts that have been driven by the original single latch. The proposed algorithm is then extended such that relocation and cloning are applied to some latches together with their neighbor logic gates. Experimental results demonstrate that the worst negative slack and the total negative slack are improved by 24% and 59%, respectively, on average of test circuits. The negative impacts on circuit area and power consumption are both marginal, at 0.7% and 1.9% respectively.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献