Algorithm 961

Author:

Benner Peter1,Sima Vasile2,Voigt Matthias3

Affiliation:

1. Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

2. National Institute for Research and Development in Informatics, Bucharest, Romania

3. Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

Abstract

Skew-Hamiltonian/Hamiltonian matrix pencils λ S — H appear in many applications, including linear-quadratic optimal control problems, H -optimization, certain multibody systems, and many other areas in applied mathematics, physics, and chemistry. In these applications it is necessary to compute certain eigenvalues and/or corresponding deflating subspaces of these matrix pencils. Recently developed methods exploit and preserve the skew-Hamiltonian/Hamiltonian structure and hence increase the reliability, accuracy, and performance of the computations. In this article, we describe the corresponding algorithms which have been implemented in the style of subroutines of the Subroutine Library in Control Theory (SLICOT). Furthermore, we address some of their applications. We describe variants for real and complex problems, as well as implementation details and perform numerical tests using real-world examples to demonstrate the superiority of the new algorithms compared to standard methods.

Funder

Deutsche Forschungsgemeinschaft in the project “Numerical algorithms for generalized eigenvalue problems of even structure with application in robust control of descriptor systems”

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference35 articles.

1. CAREX - A Collection of Benchmark Examples for Continuous-Time Algebraic Riccati Equations (Version 2.0);Abels J.;SLICOT Working Note,1999

2. Approximation of Large-Scale Dynamical Systems

3. Algorithm 800

4. P. Benner R. Byers P. Losse V. Mehrmann and H. Xu. 2007. Numerical solution of real skew-Hamiltonian/Hamiltonian eigenproblems. (Nov. 2007). Unpublished report. P. Benner R. Byers P. Losse V. Mehrmann and H. Xu. 2007. Numerical solution of real skew-Hamiltonian/Hamiltonian eigenproblems. (Nov. 2007). Unpublished report.

5. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the stability radius for linear time-delay systems;BIT Numerical Mathematics;2024-01-30

2. Performance improvement in computing the L-infinity norm of descriptor systems;Journal of Engineering Sciences and Innovation;2023-09-29

3. Convergence Rate Analysis and Improved Iterations for Numerical Radius Computation;SIAM Journal on Scientific Computing;2023-04-27

4. Efficient computation of the L-infinity norm of descriptor systems;Journal of Engineering Sciences and Innovation;2022-12-20

5. A Flexible and Accurate Solver for Continuous-Time Algebraic Riccati Equations;SN Computer Science;2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3