1. 2015. Label-embedding for image classification;Akata Z.;TPAMI,2015
2. Z. Akata S. Reed D. Walter H. Lee and B. Schiele. 2015. Evaluation of output embeddings for fine-grained image classification. In CVPR. 2927--2936. Z. Akata S. Reed D. Walter H. Lee and B. Schiele. 2015. Evaluation of output embeddings for fine-grained image classification. In CVPR. 2927--2936.
3. L. Ardizzone J. Kruse S. Wirkert D. Rahner E. W. Pellegrini R. S. Klessen L. Maier-Hein C. Rother and U. Köthe. 2018. Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730 (2018). L. Ardizzone J. Kruse S. Wirkert D. Rahner E. W. Pellegrini R. S. Klessen L. Maier-Hein C. Rother and U. Köthe. 2018. Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730 (2018).
4. L. Ardizzone C. Lüth J. Kruse C. Rother and U. Köthe. 2019. Guided image gener-ation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019). L. Ardizzone C. Lüth J. Kruse C. Rother and U. Köthe. 2019. Guided image gener-ation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019).
5. M. Arjovsky S. Chintala and L. Bottou. 2017. Wasserstein generative adversarial networks. In ICML. 214--223. M. Arjovsky S. Chintala and L. Bottou. 2017. Wasserstein generative adversarial networks. In ICML. 214--223.