1. Amit Chaulwar, Lukas Malik, Maciej Krajewski, Felix Reichel, Leif-Nissen Lundbæk, Michael Huth, and Bartlomiej Matejczyk. 2022. Extreme compression of sentence-transformer ranker models: faster inference, longer battery life, and less storage on edge devices. ArXiv abs/2207.12852 (2022).
2. Gabrielle Cohn, Rishika Agarwal, Deepanshu Gupta, and Siddharth Patwardhan. 2023. EELBERT: Tiny Models through Dynamic Embeddings. In EMNLP. https://arxiv.org/abs/2310.20144
3. Ona De Gibert, Naiara Perez, Aitor García-Pablos, and Montse Cuadros. 2018. Hate speech dataset from a white supremacy forum. arXiv preprint arXiv:1809.04444 (2018).
4. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
5. Ali Edalati, Marzieh S. Tahaei, Ahmad Rashid, Vahid Partovi Nia, James J. Clark, and Mehdi Rezagholizadeh. 2021. Kronecker Decomposition for GPT Compression. CoRR abs/2110.08152 (2021). arXiv:2110.08152https://arxiv.org/abs/2110.08152