Transfer Learning Enabled Modeling Paradigm for PVT-aware Circuit Performance Estimation

Author:

Amuru Deepthi1ORCID,VECHALAPU RAJA MAVULLU1ORCID,Abbas Zia1ORCID

Affiliation:

1. CVEST, Electronics and Communication Engineering, International Institute of Information Technology, Hyderabad (IIITH), Gachibowli, India

Abstract

Designing robust performance models for modern complex digital circuits in the face of rapidly accelerating process variations is a critical yet demanding task. This paper introduces an efficient statistical performance modeling approach for VLSI digital circuits that incurs minimal computational expense. The fundamental concept involves capitalizing on knowledge gained from circuit modeling in one technology node to streamline the modeling process in another. This is achieved by merging previously established statistical models of process technology with a limited set of simulation data from a subsequent process technology through transfer learning. Comprehensive experiments conducted across diverse technology nodes demonstrate that the proposed framework is robust, precise, efficient in data usage, and computationally superior to other cutting-edge performance modeling techniques.

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. 2017. BSIM4 Model. https://bsim.berkeley.edu/models/bsim4/

2. 2022. 2022. International Roadmap for Devices and Systems [online]. https://irds.ieee.org/editions/2022.

3. 2023. BSIM-CMG Model. http://bsim.berkeley.edu/models/bsimcmg/

4. A Voltage-Based Leakage Current Calculation Scheme and its Application to Nanoscale MOSFET and FinFET Standard-Cell Designs

5. Zia Abbas, Andleeb Zahra, Mauro Olivieri, and Antonio Mastrandrea. 2018. Geometry Scaling Impact on Leakage Currents in FinFET Standard Cells Based on a Logic-Level Leakage Estimation. Microelectronics, Electromagnetics and Telecommunications: Proceedings of ICMEET 2017 471(2018), 283.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3