1. Deep Learning with Differential Privacy
2. S.-W. An and S.-C. Seo . 2020. Highly Efficient Implementation of Block Ciphers on Graphic Processing Units for Massively Large Data. Applied Sciences 10, 11 ( 2020 ). S.-W. An and S.-C. Seo. 2020. Highly Efficient Implementation of Block Ciphers on Graphic Processing Units for Massively Large Data. Applied Sciences 10, 11 (2020).
3. C. Beguier M. Andreux and E. Tramel. 2021. Efficient Sparse Secure Aggregation for Federated Learning. https://arxiv.org/pdf/2007.14861.pdf. C. Beguier M. Andreux and E. Tramel. 2021. Efficient Sparse Secure Aggregation for Federated Learning. https://arxiv.org/pdf/2007.14861.pdf.
4. J. H. Bell , K. A. Bonawitz , A. Gascón , T. Lepoint , and M. Raykova . 2020 . Secure Single-Server Aggregation with (Poly)Logarithmic Overhead. In CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security , Virtual Event, USA, November 9--13 , 2020 , Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1253--1269. J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic Overhead. In CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, November 9--13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1253--1269.