Latency Imbalance Among Internet Load-Balanced Paths

Author:

Pi Yibo1,Jamin Sugih1,Danzig Peter,Qian Feng2

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

2. University of Minnesota - Twin Cities, Minneapolis, MN, USA

Abstract

Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloudcentric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3