Affiliation:
1. Vienna University of Technology, Vienna, Austria
2. University of Ottawa, Ottawa, Canada
Abstract
A new generation of cyber-physical systems has emerged with a large number of devices that continuously generate and consume massive amounts of data in a distributed and mobile manner. Accurate and near real-time decisions based on such streaming data are in high demand in many areas of optimization for such systems. Edge data analytics bring processing power in the proximity of data sources, reduce the network delay for data transmission, allowlargescale distributed training, and consequently help meeting real-time requirements. Nevertheless, the multiplicity of data sources leads to multiple distributed machine learning models that may suffer from sub-optimal performance due to the inconsistency in their states. In this work, we tackle the insularity, concept drift, and connectivity issues in edge data analytics to minimize its accuracy handicap without losing its timeliness benefits. Thus, we propose an efficient model synchronization mechanism for distributed and stateful data analytics. Staleness Control for Edge Data Analytics (SCEDA) ensures the high adaptability of synchronization frequency in the face of an unpredictable environment by addressing the trade-off between the generality and timeliness of the model.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献