On the Complexity of Traffic Traces and Implications

Author:

Avin Chen1,Ghobadi Manya2,Griner Chen1,Schmid Stefan3

Affiliation:

1. Ben Gurion University, Be'er Sheva, Israel

2. MIT, Cambridge, MA, USA

3. University of Vienna, Vienna, Austria

Abstract

This paper presents a systematic approach to identify and quantify the types of structures featured by packet traces in communication networks. Our approach leverages an information-theoretic methodology, based on iterative randomization and compression of the packet trace, which allows us to systematically remove and measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace complexity can provide unique insights into the characteristics of various applications. Based on our approach, we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels of its corresponding realworld trace. Using a case study in the context of datacenters, we show that insights into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies that are optimized for specific traffic patterns.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SeedTree: A Dynamically Optimal and Local Self-Adjusting Tree;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17

2. Locality Matters! Traffic Demand Modeling in Datacenter Networks;Proceedings of the 6th Asia-Pacific Workshop on Networking;2022-07

3. Dynamically Optimal Self-adjusting Single-Source Tree Networks;LATIN 2020: Theoretical Informatics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3