MEGA---the maximizing expected generalization algorithm for learning complex query concepts

Author:

Chang Edward1,Li Beitao1

Affiliation:

1. University of California, Santa Barbara, Santa Barbara, CA

Abstract

Specifying exact query concepts has become increasingly challenging to end-users. This is because many query concepts (e.g., those for looking up a multimedia object) can be hard to articulate, and articulation can be subjective. In this study, we propose a query-concept learner that learns query criteria through an intelligent sampling process. Our concept learner aims to fulfill two primary design objectives: (1) it has to be expressive in order to model most practical query concepts and (2) it must learn a concept quickly and with a small number of labeled data since online users tend to be too impatient to provide much feedback. To fulfill the first goal, we model query concepts in k -CNF, which can express almost all practical query concepts. To fulfill the second design goal, we propose our maximizing expected generalization algorithm (MEGA), which converges to target concepts quickly by its two complementary steps: sample selection and concept refinement. We also propose a divide-and-conquer method that divides the concept-learning task into G subtasks to achieve speedup. We notice that a task must be divided carefully, or search accuracy may suffer. Through analysis and mining results, we observe that organizing image features in a multiresolution manner, and minimizing intragroup feature correlation, can speed up query-concept learning substantially while maintaining high search accuracy. Through examples, analysis, experiments, and a prototype implementation, we show that MEGA converges to query concepts significantly faster than traditional methods.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data in Medical Image Processing;2018-01-29

2. Supervised Learning using an Active Strategy;Procedia Technology;2014

3. A linear transform scheme for building weighted scoring rules1;Intelligent Data Analysis;2012-05-04

4. Query Concept Learning;Foundations of Large-Scale Multimedia Information Management and Retrieval;2011

5. Customized classification learning based on query projections;Information Sciences;2007-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3