Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data

Author:

Han Huimei1,Zhu Xingquan2ORCID,Li Ying3

Affiliation:

1. Zhejiang University of Technology and Florida Atlantic University, Zhejiang, P.R. China

2. Florida Atlantic University, Boca Raton, FL

3. Xidian University, Shannxi, P.R. China

Abstract

Long Short-Term Memory (LSTM) network, a popular deep-learning model, is particularly useful for data with temporal correlation, such as texts, sequences, or time series data, thanks to its well-sought after recurrent network structures designed to capture temporal correlation. In this article, we propose to generalize LSTM to generic machine-learning tasks where data used for training do not have explicit temporal or sequential correlation. Our theme is to explore feature correlation in the original data and convert each instance into a synthetic sentence format by using a two-gram probabilistic language model. More specifically, for each instance represented in the original feature space, our conversion first seeks to horizontally align original features into a sequentially correlated feature vector, resembling to the letter coherence within a word. In addition, a vertical alignment is also carried out to create multiple time points and simulate word sequential order in a sentence ( i.e., word correlation). The two dimensional horizontal-and-vertical alignments not only ensure feature correlations are maximally utilized, but also preserve the original feature values in the new representation. As a result, LSTM model can be utilized to achieve good classification accuracy, even if the underlying data do not have temporal or sequential dependency. Experiments on 20 generic datasets show that applying LSTM to generic data can improve the classification accuracy, compared to conventional machine-learning methods. This research opens a new opportunity for LSTM deep learning to be broadly applied to generic machine-learning tasks.

Funder

US National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3