Affiliation:
1. University of Illinois at Urbana Champaign
Abstract
Concurrency bugs are among the most difficult to test and diagnose of all software bugs. The multicore technology trend worsens this problem. Most previous concurrency bug detection work focuses on one bug subclass, data races, and neglects many other important ones such as
atomicity violations
, which will soon become increasingly important due to the emerging trend of transactional memory models.This paper proposes an innovative, comprehensive, invariantbased approach called AVIO to detect atomicity violations. Our idea is based on a novel observation called
access interleaving invariant
, which is a good indication of programmers' assumptions about the atomicity of certain code regions. By automatically extracting such invariants and detecting violations of these invariants at run time, AVIO can detect a variety of atomicity violations.Based on this idea, we have designed and built
two
implementations of AVIO and evaluated the
trade-offs
between them. The first implementation, AVIO-S, is purely in software, while the second, AVIO-H, requires some simple extensions to the cache coherence hardware. AVIO-S is cheaper and more accurate but incurs much higher overhead and thus more run-time perturbation than AVIOH. Therefore, AVIO-S is more suitable for in-house bug detection and postmortem bug diagnosis, while AVIO-H can be used for bug detection during production runs.We evaluate both implementations of AVIO using large realworld server applications (Apache and MySQL) with six representative real atomicity violation bugs, and SPLASH-2 benchmarks. Our results show that AVIO detects more tested atomicity violations of various types and has 25 times fewer false positives than previous solutions on average.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Reference45 articles.
1. Unbounded Transactional Memory
2. Piranha
3. Ownership types for safe programming
4. Finding stale-value errors in concurrent programs;Burrows M.;Compaq SRC Technical Note,2002
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献