Exploring the Potential of Large Language Models (LLMs)in Learning on Graphs

Author:

Chen Zhikai1,Mao Haitao1,Li Hang1,Jin Wei2,Wen Hongzhi1,Wei Xiaochi3,Wang Shuaiqiang3,Yin Dawei3,Fan Wenqi4,Liu Hui1,Tang Jiliang1

Affiliation:

1. Michigan State University

2. Emory University

3. Baidu Inc.

4. The Hong Kong Polytechnic University

Abstract

Learning on Graphs has attracted immense attention due to its wide real-world applications. The most popular pipeline for learning on graphs with textual node attributes primarily relies on Graph Neural Networks (GNNs), and utilizes shallow text embedding as initial node representations, which has limitations in general knowledge and profound semantic understanding. In recent years, Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities that have revolutionized existing workflows to handle text data. In this paper, we aim to explore the potential of LLMs in graph machine learning, especially the node classification task, and investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors. The former leverages LLMs to enhance nodes' text attributes with their massive knowledge and then generate predictions through GNNs. The latter attempts to directly employ LLMs as standalone predictors. We conduct comprehensive and systematical studies on these two pipelines under various settings. From comprehensive empirical results, we make original observations and find new insights that open new possibilities and suggest promising directions to leverage LLMs for learning on graphs. Our codes and datasets are available at: https://github.com/CurryTang/Graph-LLM .

Publisher

Association for Computing Machinery (ACM)

Reference87 articles.

1. R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey, Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

2. S. Bubeck, V. Chandrasekaran, R. Eldan, J. A. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y.-F. Li, S. M. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4. ArXiv, abs/2303.12712, 2023.

3. Z. Chai, T. Zhang, L. Wu, K. Han, X. Hu, X. Huang, and Y. Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint arXiv:2310.05845, 2023.

4. Z. Chen, H. Mao, H. Wen, H. Han, W. Jin, H. Zhang, H. Liu, and J. Tang. Label-free node classification on graphs with large language models (llms). arXiv preprint arXiv:2310.04668, 2023.

5. W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh. Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GEML: a graph-enhanced pre-trained language model framework for text classification via mutual learning;Applied Intelligence;2024-09-11

2. A Survey of Large Language Models for Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Large Language Models as a Service: Optimisation Strategies via Knowledge Space Reduction;2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS);2024-07-29

4. Graph Convolutional Network for Image Restoration: A Survey;Mathematics;2024-06-28

5. Can GNN be Good Adapter for LLMs?;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3