Report on the 3rd International Workshop onLearning to Quantify (LQ 2023)

Author:

Bunse Mirko1,Gonzalez Pablo2,Moreo Alejandro3,Sebastiani Fabrizio3

Affiliation:

1. TU Dortmund University, Dortmund, Germany

2. University of Oviedo, 33204 Gijon, Spain

3. Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy

Abstract

The 3rd International Workshop on Learning to Quantify (LQ 2023)1 took place on September 18, 2023 in Torino, IT, where it was organised as a satellite event of the 34th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023). Like the main program of the conference, the workshop employed a hybrid format, with all presentations given in presence and with attendees participating in presence or online. This report presents a summary of the workshop, briefly summarising the individual works presented, and touching on the main issues that emerged during the final, open discussion.

Publisher

Association for Computing Machinery (ACM)

Reference21 articles.

1. O. Beijbom, J. Hoffman, E. Yao, T. Darrell, A. Rodriguez-Ramirez, M. Gonzalez-Rivero, and O. Hoegh-Guldberg. Quantification in-the-wild: Datasets and baselines. CoRR abs/1510.04811 (2015). Presented at the NIPS 2015 Workshop on Transfer and Multi-Task Learning, Montreal, CA, 2015.

2. M. Bunse. On multi-class extensions of adjusted classify and count. In Proceedings of the 2nd International Workshop on Learning to Quantify (LQ 2022), pages 43--50, Grenoble, IT, 2022.

3. M. Bunse. Unification of algorithms for quantification and unfolding. In Proceedings of the Workshop on Machine Learning for Astroparticle Physics and Astronomy, pages 459--468, Hamburg, DE, 2022.

4. M. Bunse. Qunfold: Composable quantification and unfolding methods in Python. In Proceedings of the 3rd International Workshop on Learning to Quantify (LQ 2023), pages 1--7, Torino, IT, 2023.

5. M. Bunse, P. Gonz´alez, A. Moreo, and F. Sebastiani, editors. Proceedings of the 3rd International Workshop on Learning to Quantify (LQ 2023). Torino, IT, 2023.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3