General Template Units for the Finite Volume Method in Box-Shaped Domains

Author:

Cruz Luis M. De La1,Ramos Eduardo2

Affiliation:

1. Geophysics Institute, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico

2. Renewable Energy Institute, Universidad Nacional Autonoma de Mexico, Temixco, Mor. Mexico

Abstract

In this work, we develop an extension of the Curiously Recurring Template Pattern (CRTP), which allows us to organize three related concepts in a class hierarchy. Generalizations, specializations and special procedures are the concepts that we use to define and implement several tools. We call these tools general template units because they are well-defined building blocks (units) for numerically solving partial differential equations (PDEs), are based on the use of templates of the C++ language, and can be applied in the solution of different kinds of problems. We focus on the solution of PDEs using the Finite Volume Method (FVM) in box-shaped domains. The three concepts just mentioned are intensively used to generate optimized codes for each case study. The convenience of our approach is highlighted in the numerical solutions of the examples of application, including laminar thermal convection, turbulent thermal convection, as well as a two-phase flow model in porous media, all of them in one, two, and three dimensions. The mathematical models of these examples were obtained using the axiomatic formulation, which provides generality, simplicity, and clarity to tackle any continuum mechanics application. The ideas explained in this work are quite simple but powerful in solving fluid dynamics problems, in which the conservativeness of the FVM is an important feature. The techniques developed in this work allow us to swap easily between numerical schemes for computing the coefficients obtained by applying the FVM.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference51 articles.

1. Streamline simulation of counter-current imbibition in naturally fractured reservoirs

2. M. Allen I. Herrera and G. Pinder. 1998. Numerical Modelling in Science and Engineering. John Wiley & Sons New York NY. M. Allen I. Herrera and G. Pinder. 1998. Numerical Modelling in Science and Engineering. John Wiley & Sons New York NY.

3. deal.II—A general-purpose object-oriented finite element library

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3