Realizing Reversible Computing in QCA Framework Resulting in Efficient Design of Testable ALU

Author:

Sen Bibhash1,Dutta Manojit1,Some Samik1,Sikdar Biplab K.2

Affiliation:

1. National Institute of Technology Durgapur

2. Indian Institute of Engineering and Science and Technology, Shibpur

Abstract

Reversible logic is emerging as a prospective logic design style for implementing ultra-low-power VLSI circuits. It promises low-power consuming circuits by nullifying the energy dissipation in irreversible logic. On the other hand, as a potential alternative to CMOS technology, Quantum-dot Cellular Automata (QCA) promises energy efficient digital design with high device density and high computing speed. The integration of reversible logic in QCA circuit is expected to be effective in addressing the issue of energy dissipation at nano scale regime. This work targets the design of reversible ALU (arithmetic logic unit) in QCA framework and proposes a new “Reversible QCA” (RQCA). The primary design focus is on optimizing the number of reversible gates, quantum cost and the garbage outputs that are the most important hindrances in realizing reversible logic. Besides optimization, the fault coverage capability of RQCA under missing/additional cell deposition defects is analysed. The scope of reversible logic is further outstretched by introducing a novel DFT (design for testability) architecture around the reversible ALU that reduces testing overhead. The performance of proposed ALU is evaluated, subjected to different faults, and is established to be more effective than the existing ALU.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3