Predictive Analytics for Smart Parking: A Deep Learning Approach in Forecasting of IoT Data

Author:

Piccialli Francesco1ORCID,Giampaolo Fabio1ORCID,Prezioso Edoardo1,Crisci Danilo1,Cuomo Salvatore1

Affiliation:

1. Department of Mathematics and Applications “R. Caccioppoli,” University of Naples Federico II, Napoli, Italy

Abstract

Nowadays, a sustainable and smart city focuses on energy efficiency and the reduction of polluting emissions through smart mobility projects and initiatives to “sensitize” infrastructure. Smart parking is one of the building blocks of intelligent mobility, innovative mobility that aims to be flexible, integrated, and sustainable and consequently integrated into a Smart City. By using the Internet of Things (IoT) sensors located in the parking areas or the underground car parks in combination with a mobile application, which indicates to citizens the free places in the different areas of the city and guides them toward the chosen parking, it is possible to reduce air pollution and fluidifying noise traffic. In this article, we present and discuss an innovative Deep Learning-based ensemble technique in forecasting the parking space occupancy to reduce the search time for parking and to optimize the flow of cars in particularly congested areas, with an overall positive impact on traffic in urban centres. A genetic algorithm has also been used to optimize predictors parameters. The main goal is to design an intelligent IoT-based service that can predict, in the next few hours, the parking spaces occupancy of a street. The proposed approach has been assessed on a real IoT dataset composed by over than 15M of collected sensor records. Obtained results demonstrate that our method outperforms both single predictors and the widely used strategy of the mean providing inherently robust predictions.

Funder

CeSMA

Centro Servizi Metrologici e Tecnologici Avanzati

University of Naples Federico II

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3