Example-based machine translation using efficient sentence retrieval based on edit-distance

Author:

Doi Takao1,Yamamoto Hirofumi1,Sumita Eiichiro1

Affiliation:

1. ATR Spoken Language Communication Research Laboratories, Kyoto-fu, Japan

Abstract

An Example-Based Machine Translation (EBMT) system, whose translation example unit is a sentence, can produce an accurate and natural translation if translation examples similar enough to an input sentence are retrieved. Such a system, however, suffers from the problem of narrow coverage. To reduce the problem, a large-scale parallel corpus is required and, therefore, an efficient method is needed to retrieve translation examples from a large-scale corpus. The authors propose an efficient retrieval method for a sentence-wise EBMT using edit-distance. The proposed retrieval method efficiently retrieves the most similar sentences using the measure of edit-distance without omissions. The proposed method employs search-space division, word graphs, and an A* search algorithm. The performance of the EBMT was evaluated through Japanese-to-English translation experiments using a bilingual corpus comprising hundreds of thousands of sentences from a travel conversation domain. The EBMT system achieved a high-quality translation ability by using a large corpus and also achieved efficient processing by using the proposed retrieval method.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference23 articles.

1. Balancing up efficiency and accuracy in translation retrieval;Baldwin T.;Journal of Natural Language Processing,2001

2. Canonical regular expressions and minimal state graphs for definite events. In Proc. of Symposium of Mathematical Theory of Automata;Brzozowski J. A.;MRI Symposia Series,1962

3. Cormen H. T. Leiserson C. E. and Rivest L. R. 1989. Introduction to Algorithms. The MIT Press Cambridge MA. Cormen H. T. Leiserson C. E. and Rivest L. R. 1989. Introduction to Algorithms. The MIT Press Cambridge MA.

4. Example retrieval from a translation memory

5. Doi T. and Sumita E. 2005. Splitting input for machine translation using n-gram language model together with utterance similarity. IEICE Transactions on Information and Systems E88-D 6 1256--1264. 10.1093/ietisy/e88-d.6.1256 Doi T. and Sumita E. 2005. Splitting input for machine translation using n-gram language model together with utterance similarity. IEICE Transactions on Information and Systems E88-D 6 1256--1264. 10.1093/ietisy/e88-d.6.1256

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3