Treadmill

Author:

Zhang Yunqi1,Meisner David2,Mars Jason1,Tang Lingjia1

Affiliation:

1. University of Michigan

2. Facebook Inc.

Abstract

Managing tail latency of requests has become one of the primary challenges for large-scale Internet services. Data centers are quickly evolving and service operators frequently desire to make changes to the deployed software and production hardware configurations. Such changes demand a confident understanding of the impact on one's service, in particular its effect on tail latency (e.g., 95th- or 99th-percentile response latency of the service). Evaluating the impact on the tail is challenging because of its inherent variability. Existing tools and methodologies for measuring these effects suffer from a number of deficiencies including poor load tester design, statistically inaccurate aggregation, and improper attribution of effects. As shown in the paper, these pitfalls can often result in misleading conclusions. In this paper, we develop a methodology for statistically rigorous performance evaluation and performance factor attribution for server workloads. First, we find that careful design of the server load tester can ensure high quality performance evaluation, and empirically demonstrate the inaccuracy of load testers in previous work. Learning from the design flaws in prior work, we design and develop a modular load tester platform, Treadmill, that overcomes pitfalls of existing tools. Next, utilizing Treadmill, we construct measurement and analysis procedures that can properly attribute performance factors. We rely on statistically-sound performance evaluation and quantile regression, extending it to accommodate the idiosyncrasies of server systems. Finally, we use our augmented methodology to evaluate the impact of common server hardware features with Facebook production workloads on production hardware. We decompose the effects of these features on request tail latency and demonstrate that our evaluation methodology provides superior results, particularly in capturing complicated and counter-intuitive performance behaviors. By tuning the hardware features as suggested by the attribution, we reduce the 99th-percentile latency by 43% and its variance by 93%.

Publisher

Association for Computing Machinery (ACM)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. InSS: An Intelligent Scheduling Orchestrator for Multi-GPU Inference With Spatio-Temporal Sharing;IEEE Transactions on Parallel and Distributed Systems;2024-10

2. DeInfer: A GPU resource allocation algorithm with spatial sharing for near-deterministic inferring tasks;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

3. Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors;Proceedings of the 24th International Middleware Conference on ZZZ;2023-11-27

4. Turbo: SmartNIC-enabled Dynamic Load Balancing of µs-scale RPCs;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

5. Adrias: Interference-Aware Memory Orchestration for Disaggregated Cloud Infrastructures;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3