Exploiting dynamic timing slack for energy efficiency in ultra-low-power embedded systems

Author:

Cherupalli Hari1,Kumar Rakesh2,Sartori John1

Affiliation:

1. University of Minnesota

2. University of Illinois

Abstract

Many emerging applications such as the internet of things, wearables, and sensor networks have ultra-low-power requirements. At the same time, cost and programmability considerations dictate that many of these applications will be powered by general purpose embedded microprocessors and microcontrollers, not ASICs. In this paper, we exploit a new opportunity for improving energy efficiency in ultra-low-power processors expected to drive these applications -- dynamic timing slack. Dynamic timing slack exists when an embedded software application executed on a processor does not exercise the processor's static critical paths. In such scenarios, the longest path exercised by the application has additional timing slack which can be exploited for power savings at no performance cost by scaling down the processor's voltage at the same frequency until the longest exercised paths just meet timing constraints. Paths that cannot be exercised by an application can safely be allowed to violate timing constraints. We show that dynamic timing slack exists for many ultra-low-power applications and that exploiting dynamic timing slack can result in significant power savings for many ultra-low-power processors. We also present an automated methodology for identifying dynamic timing slack and selecting a safe operating point for a processor and a particular embedded software. Our approach for identifying and exploiting dynamic timing slack is non-speculative, requires no programmer intervention and little or no hardware support, and demonstrates potential power savings of up to 32%, 25% on average, over a range of embedded applications running on a common ultra-low-power processor, at no performance cost.

Publisher

Association for Computing Machinery (ACM)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Embedded Intelligent Target Detection System in Basketball Movement Test;Wireless Communications and Mobile Computing;2022-09-28

2. Design of Embedded Development Course Teaching Platform Based on ARM Cortex M3;2022 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers;2022-04-14

3. Low-power Near-data Instruction Execution Leveraging Opcode-based Timing Analysis;ACM Transactions on Architecture and Code Optimization;2022-01-31

4. Design and Research of Optical Fiber Signal Analyzer in Embedded System Based on Big Data;Journal of Physics: Conference Series;2021-11-01

5. Distributed Virtual Environment Basketball Equipment Embedded Systems’ Research and Development;Mathematical Problems in Engineering;2021-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3