PowerChop

Author:

Laurenzano Michael A.1,Zhang Yunqi1,Chen Jiang1,Tang Lingjia1,Mars Jason1

Affiliation:

1. University of Michigan

Abstract

On-core microarchitectural structures consume significant portions of a processor's power budget. However, depending on application characteristics, those structures do not always provide (much) performance benefit. While timeout-based power gating techniques have been leveraged for underutilized cores and inactive functional units, these techniques have not directly translated to high-activity units such as vector processing units, complex branch predictors, and caches. The performance benefit provided by these units does not necessarily correspond with unit activity, but instead is a function of application characteristics. This work introduces P ower C hop , a novel technique that leverages the unique capabilities of HW/SW co-designed hybrid processors to enact unit-level power management at the application phase level. P ower C hop adds two small additional hardware units to facilitate phase identification and triggering different power states, enabling the software layer to cheaply track, predict and take advantage of varying unit criticality across application phases by powering gating units that are not needed for performant execution. Through detailed experimentation, we find that P ower C hop significantly decreases power consumption, reducing the leakage power of a hybrid server processor by 9% on average (up to 33%) and a hybrid mobile processor by 19% (up to 40%) while introducing just 2% slowdown.

Publisher

Association for Computing Machinery (ACM)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neurosurgeon;ACM SIGPLAN Notices;2017-05-12

2. Neurosurgeon;ACM SIGARCH Computer Architecture News;2017-05-11

3. Neurosurgeon;Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems;2017-04-04

4. Neurosurgeon;ACM SIGOPS Operating Systems Review;2017-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3