Energy efficient data encoding in DRAM channels exploiting data value similarity

Author:

Seol Hoseok1,Shin Wongyu1,Jang Jaemin1,Choi Jungwhan1,Suh Jinwoong1,Kim Lee-Sup1

Affiliation:

1. Korea Advanced Institute of Science and Technology

Abstract

As DRAM data bandwidth increases, tremendous energy is dissipated in the DRAM data bus. To reduce the energy consumed in the data bus, DRAM interfaces with asymmetric termination, such as Pseudo Open Drain (POD) and Low Voltage Swing Terminated Logic (LVSTL), have been adopted in modern DRAMs. In interfaces using asymmetric termination, the amount of termination energy is proportional to the hamming weight of the data words. In this work, we propose Bitwise Difference Encoding (BD-Encoding), which decreases the hamming weight of data words, leading to a reduction in energy consumption in the modern DRAM data bus. Since smaller hamming weight of the data words also reduces switching activity, switching energy and power noise are also both reduced. BD-Encoding exploits the similarity in data words in the DRAM data bus. We observed that similar data words (i.e. data words whose hamming distance is small) are highly likely to be sent over at similar times. Based on this observation, BD-coder stores the data recently sent over in both the memory controller and DRAMs. Then, BD-coder transfers the bitwise difference between the current data and the most similar data. In an evaluation using SPEC 2006, BD-Encoding using 64 recent data reduced termination energy by 58.3% and switching energy by 45.3%. In addition, 55% of the LdI/dt noise was decreased with BD-Encoding.

Publisher

Association for Computing Machinery (ACM)

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoolDRAM: An Energy-Efficient and Robust DRAM;2023 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED);2023-08-07

2. Energy-Efficient Bus Encoding Techniques for Next-Generation PAM-4 DRAM Interfaces;2022 IEEE 40th International Conference on Computer Design (ICCD);2022-10

3. PIPF-DRAM;Proceedings of the 59th ACM/IEEE Design Automation Conference;2022-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3