1. Springer Berlin Heidelberg, Berlin;Alsmeyer G.;Heidelberg,2011
2. Blázqez-García , A. , Conde , A. , Mori , U. , and Lozano , J. A . A review on outlier/anomaly detection in time series data. ACM Computing Surveys (CSUR) 54, 3 ( 2021 ), 1--33. Blázqez-García, A., Conde, A., Mori, U., and Lozano, J. A. A review on outlier/anomaly detection in time series data. ACM Computing Surveys (CSUR) 54, 3 (2021), 1--33.
3. Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators
4. Series C (Applied Statistics) 29, 3;Campbell N. A.,1980
5. Choi , K. , Yi , J. , Park , C. , and Yoon , S . Deep learning for anomaly detection in time-series data: review, analysis, and guidelines . IEEE Access ( 2021 ). Choi, K., Yi, J., Park, C., and Yoon, S. Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access (2021).