Relaxation methods for image reconstruction

Author:

Herman Gabor T.1,Lent Arnold1,Lutz Peter H.1

Affiliation:

1. The State Univ. of New York at Buffalo, Amherst, NY

Abstract

The problem of recovering an image (a function of two variables) from experimentally available integrals of its grayness over thin strips is of great importance in a large number of scientific areas. An important version of the problem in medicine is that of obtaining the exact density distribution within the human body from X-ray projections. One approach that has been taken to solve this problem consists of translating the available information into a system of linear inequalities. The size and the sparsity of the resulting system (typically, 25,000 inequalities with fewer than 1 percent of the coefficients nonzero) makes methods using successive relaxations computationally attractive, as compared to other ways of solving systems of inequalities. In this paper, it is shown that, for a consistent system of linear inequalities, any sequence of relaxation parameters lying strictly between 0 and 2 generates a sequence of vectors which converges to a solution. Under the same assumptions, for a system of linear equations, the relaxation method converges to the minimum norm solution. Previously proposed techniques are shown to be special cases of our procedure with different choices of relaxation parameters. The practical consequences for image reconstruction of the choice of the relaxation parameters are discussed.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference14 articles.

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3