What you needa know about Yoneda: profunctor optics and the Yoneda lemma (functional pearl)

Author:

Boisseau Guillaume1,Gibbons Jeremy1

Affiliation:

1. University of Oxford, UK

Abstract

Profunctor optics are a neat and composable representation of bidirectional data accessors, including lenses, and their dual, prisms. The profunctor representation exploits higher-order functions and higher-kinded type constructor classes, but the relationship between this and the familiar representation in terms of "getter" and "setter" functions is not at all obvious. We derive the profunctor representation from the concrete representation, making the relationship clear. It turns out to be a fairly direct application of the Yoneda Lemma, arguably the most important result in category theory. We hope this derivation aids understanding of the profunctor representation. Conversely, it might also serve to provide some insight into the Yoneda Lemma.

Funder

EPSRC DTA

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference42 articles.

1. Kazuyuki Asada. 2010. Arrows are Strong Monads. In Mathematically Structured Functional Programming. ACM. 10.1145/1863597.1863607 Kazuyuki Asada. 2010. Arrows are Strong Monads. In Mathematically Structured Functional Programming. ACM. 10.1145/1863597.1863607

2. Alexey Avramenko. 2017. Yoneda and Coyoneda Trick. (April 2017). https://medium.com/@olxc/ yoneda- and- coyoneda- trick- f5a0321aeba4 . Alexey Avramenko. 2017. Yoneda and Coyoneda Trick. (April 2017). https://medium.com/@olxc/ yoneda- and- coyoneda- trick- f5a0321aeba4 .

3. Steve Awodey. 2006. Category Theory. Oxford University Press. Steve Awodey. 2006. Category Theory. Oxford University Press.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A framework for higher-order effects & handlers;Science of Computer Programming;2024-05

2. Profunctor Optics, a Categorical Update;Compositionality;2024-02-23

3. Forward- or reverse-mode automatic differentiation: What's the difference?;Science of Computer Programming;2024-01

4. Collages of String Diagrams;Electronic Proceedings in Theoretical Computer Science;2023-12-14

5. Why Adjunctions Matter—A Functional Programmer Perspective;Recent Trends in Algebraic Development Techniques;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3