Benchmark health considered harmful

Author:

Zilles Craig B.1

Affiliation:

1. Univ. of Wisconsin-Madison, Madison

Abstract

In the past couple of years, a number of software and architectural techniques have been proposed for improving the performance of linked data structrues. These research ideas are often evaluated using the Olden benchmark suite [1]. Frequently, in such experients, the largest speed-up is attained for the benchmark called health . This article demonstrates that this benchmark is a micro-benchmark for enormous linked lists traversals, and not a good one at that. Given that linked lists of such size are not an efficient data structure, it is unlikely that this benchmark corresponds to any real program. Hence the benchmark should not be used. To demonstrate the inherent inefficiency in its use of linked data structures, the health program was modified algorithmically to generate the same output, while improving the execution time by over a factor of 200 on a 500Mhz Pentium II Xeon.

Publisher

Association for Computing Machinery (ACM)

Reference2 articles.

1. Supporting dynamic data structures on distributed-memory machines

2. http:\\www.cs.wisc.edu\~zilles\llubenchmark.html. http:\\www.cs.wisc.edu\~zilles\llubenchmark.html.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Processing-in-Memory Paradigm: Mechanisms to Enable Adoption;Beyond-CMOS Technologies for Next Generation Computer Design;2018-08-21

2. Accelerating Linked-list Traversal Through Near-Data Processing;Proceedings of the 2016 International Conference on Parallel Architectures and Compilation;2016-09-11

3. A comparative performance study of common and popular task-centric programming frameworks;Concurrency and Computation: Practice and Experience;2013-12-10

4. Cache index-aware memory allocation;ACM SIGPLAN Notices;2011-11-18

5. Hybrid analytical modeling of pending cache hits, data prefetching, and MSHRs;ACM Transactions on Architecture and Code Optimization;2011-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3