Affiliation:
1. ETH Zurich
2. Hebrew University and Harvard University
3. Yahoo Research
4. Microsoft Research
5. Microsoft Research and Technion
Abstract
Signaling is an important topic in the study of asymmetric information in economic settings. In particular, the transparency of information available to a seller in an auction setting is a question of major interest. We introduce the study of signaling when conducting a second price auction of a probabilistic good whose actual instantiation is known to the auctioneer but not to the bidders. This framework can be used to model impressions selling in display advertising. We establish several results within this framework. First, we study the problem of computing a signaling scheme that maximizes the auctioneer’s revenue in a Bayesian setting. We show that this problem is polynomially solvable for some interesting special cases, but computationally hard in general. Second, we establish a tight bound on the minimum number of signals required to implement an optimal signaling scheme. Finally, we show that at least half of the maximum social welfare can be preserved within such a scheme.
Funder
Google
Microsoft Research
Seventh Framework Programme
Leon Recanati Fund of the Jerusalem School of Business Administration
Division of Computing and Communication Foundations
Israel Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Marketing,Economics and Econometrics,Statistics and Probability,Computer Science (miscellaneous)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献