A Learning-Based Approach to Confident Event Detection in Heterogeneous Sensor Networks

Author:

Keally Matthew1,Zhou Gang1,Xing Guoliang2,Nguyen David T.1,Qi Xin1

Affiliation:

1. College of William and Mary, Williamsburg, VA

2. Michigan State University, East Lansing, MI

Abstract

Wireless sensor network applications, such as those for natural disaster warning, vehicular traffic monitoring, and surveillance, have stringent accuracy requirements for detecting or classifying events and demand long system lifetimes. Through quantitative study, we show that existing event detection approaches are challenged to explore the sensing capability of a deployed system and choose the right sensors to meet user-specified accuracy. Event detection systems are also challenged to provide a generic system that efficiently adapts to environmental dynamics and works easily with a range of applications, machine learning approaches, and sensor modalities. Consequently, we propose Watchdog, a modality-agnostic event detection framework that clusters the right sensors to meet user-specified detection accuracy during runtime while significantly reducing energy consumption. Watchdog can use different machine learning techniques to learn the sensing capability of a heterogeneous sensor deployment and meet accuracy requirements. To address environmental dynamics and ensure energy savings, Watchdog wakes up and puts to sleep sensors as needed to meet user-specified accuracy. Through evaluation with real vehicle detection trace data and a building traffic monitoring testbed of IRIS motes, we demonstrate the superior performance of Watchdog over existing solutions in terms of meeting user-specified detection accuracy, energy savings, and environmental adaptability.

Funder

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed on-demand clustering algorithm for lifetime optimization in wireless sensor networks;Journal of Parallel and Distributed Computing;2020-07

2. DISC: A Novel Distributed On-Demand Clustering Protocol for Internet of Multimedia Things;2019 28th International Conference on Computer Communication and Networks (ICCCN);2019-07

3. Efficient physical intrusion detection in Internet of Things: A Node deployment approach;Computer Networks;2019-05

4. Abnormal-Node Detection Based on Spatio-Temporal and Multivariate-Attribute Correlation in Wireless Sensor Networks;2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech);2018-08

5. Deployment cost minimization for composite event detection in large-scale heterogeneous wireless sensor networks;International Journal of Distributed Sensor Networks;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3