Investigating the Effect of Preprocessing Arabic Text on Offensive Language and Hate Speech Detection

Author:

Husain Fatemah1ORCID,Uzuner Ozlem2

Affiliation:

1. Kuwait University, Safat, Kuwait

2. George Mason University, Fairfax, VA, USA

Abstract

Preprocessing of input text can play a key role in text classification by reducing dimensionality and removing unnecessary content. This study aims to investigate the impact of preprocessing on Arabic offensive language classification. We explore six preprocessing techniques: conversion of emojis to Arabic textual labels, normalization of different forms of Arabic letters, normalization of selected nouns from dialectal Arabic to Modern Standard Arabic, conversion of selected hyponyms to hypernyms, hashtag segmentation, and basic cleaning such as removing numbers, kashidas, diacritics, and HTML tags. We also experiment with raw text and a combination of all six preprocessing techniques. We apply different types of classifiers in our experiments including traditional machine learning, ensemble machine learning, Artificial Neural Networks, and Bidirectional Encoder Representations from Transformers (BERT)-based models to analyze the impact of preprocessing. Our results demonstrate significant variations in the effects of preprocessing on each classifier type and on each dataset. Classifiers that are based on BERT do not benefit from preprocessing, while traditional machine learning classifiers do. However, these results can benefit from validation on larger datasets that cover broader domains and dialects.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference23 articles.

1. Abdullah I. Alharbi and Mark Lee. 2020. Combining character and word embeddings for the detection of offensive language in Arabic. In Proceedings of the 4th Workshop on Open-source Arabic Corpora and Processing Tools with a Shared Task on Offensive Language Detection. European Language Resource Association, 91–96. Retrieved from https://www.aclweb.org/anthology/2020.osact-1.15.

2. Sarah Alhumoud, Mawaheb Altuwaijri, Tarfa Albuhairi, and Wejdan Alohaideb. 2015. Survey on arabic sentiment analysis in twitter, In World Academy of Science, Engineering and Technology. Int. J. Soc. Behav. Edu. Econ. Bus. Industr. Eng. 9, 1, 364–378.

3. Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. AraBERT: Transformer-based model for Arabic language understanding. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools with a Shared Task on Offensive Language Detection. European Language Resource Association, 9–15. Retrieved from https://www.aclweb.org/anthology/2020.osact-1.2.

4. Sentiment analysis in Arabic: A review of the literature

5. Arabizi Detection and Conversion to Arabic

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3