A Novel Image Inpainting Framework Using Regression

Author:

Maiti Somanka1,Kumar Ashish2,Jain Smriti3,Bhatnagar Gaurav1ORCID

Affiliation:

1. Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India

2. University of California, Berkeley, UC Berkeley, Berkeley, CA, USA

3. Barco, Beneluxpark, Kortrijk, Belgium

Abstract

In this article, a blockwise regression-based image inpainting framework is proposed. The core idea is to fill the unknown region in two stages: Extrapolate the edges to the unknown region and then fill the unknown pixels values in each sub-region demarcated by the extended edges. Canny edge detection and linear edge extension are used to respectively identify and extend edges to the unknown region followed by regression within each sub-region to predict the unknown pixel values. Two different regression models based on K-nearest neighbours and support vectors machine are used to predict the unknown pixel values. The proposed framework has the advantage of inpainting without requiring prior training on any image dataset. The extensive experiments on different images with contrasting distortions demonstrate the robustness of the proposed framework and a detailed comparative analysis shows that the proposed technique outperforms existing state-of-the-art image inpainting methods. Finally, the proposed techniques are applied to MRI images suffering from susceptibility artifacts to illustrate the practical usage of the proposed work.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference40 articles.

1. Theoretical Foundations of Anisotropic Diffusion in Image Processing

2. Navier-stokes, fluid dynamics, and image and video inpainting;Bertalmio M.;Proceedings of Computer Vision and Pattern Recognition,2001

3. Nontexture Inpainting by Curvature-Driven Diffusions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3