The Left and Right Context of a Word

Author:

Jiang Mike Tian-Jian1,Lee Tsung-Hsien2,Hsu Wen-Lian3

Affiliation:

1. National Tsing Hua University and Academia Sinica

2. Academia Sinica and University of Texas at Austin

3. Academia Sinica and National Tsing Hua University

Abstract

Since a Chinese syllable can correspond to many characters (homophones), the syllable-to-character conversion task is quite challenging for Chinese phonetic input methods (CPIM). There are usually two stages in a CPIM: 1. segment the syllable sequence into syllable words, and 2. select the most likely character words for each syllable word. A CPIM usually assumes that the input is a complete sentence, and evaluates the performance based on a well-formed corpus. However, in practice, most Pinyin users prefer progressive text entry in several short chunks, mainly in one or two words each (most Chinese words consist of two or more characters). Short chunks do not provide enough contexts to perform the best possible syllable-to-character conversion, especially when a chunk consists of overlapping syllable words. In such cases, a conversion system often selects the boundary of a word with the highest frequency. Short chunk input is even more popular on platforms with limited computing power, such as mobile phones. Based on the observation that the relative strength of a word can be quite different when calculated leftwards or rightwards, we propose a simple division of the word context into the left context and the right context. Furthermore, we design a double ranking strategy for each word to reduce the number of errors in Step 1. Our strategy is modeled as the minimum feedback arc set problem on bipartite tournament with approximate solutions derived from genetic algorithm. Experiments show that, compared to the frequency-based method (FBM) (low memory and fast) and the conditional random fields (CRF) model (larger memory and slower), our double ranking strategy has the benefits of less memory and low power requirement with competitive performance. We believe a similar strategy could also be adopted to disambiguate conflicting linguistic patterns effectively.

Funder

research center for Humanities and Social Sciences

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3