Attention-Feedback Based Robust Segmentation of Online Handwritten Isolated Tamil Words

Author:

Sundaram Suresh1,Ramakrishnan A. G.1

Affiliation:

1. Indian Institute of Science

Abstract

In this article, we propose a lexicon-free, script-dependent approach to segment online handwritten isolated Tamil words into its constituent symbols. Our proposed segmentation strategy comprises two modules, namely the (1) Dominant Overlap Criterion Segmentation (DOCS) module and (2) Attention Feedback Segmentation (AFS) module. Based on a bounding box overlap criterion in the DOCS module, the input word is first segmented into stroke groups. A stroke group may at times correspond to a part of a valid symbol (over-segmentation) or a merger of valid symbols (under-segmentation). Attention on specific features in the AFS module serve in detecting possibly over-segmented or under-segmented stroke groups. Thereafter, feedbacks from the SVM classifier likelihoods and stroke-group based features are considered in modifying the suspected stroke groups to form valid symbols. The proposed scheme is tested on a set of 10000 isolated handwritten words (containing 53,246 Tamil symbols). The results show that the DOCS module achieves a symbol-level segmentation accuracy of 98.1%, which improves to as high as 99.7% after the AFS strategy. This in turn entails a symbol recognition rate of 83.9% (at the DOCS module) and 88.4% (after the AFS module). The resulting word recognition rates at the DOCS and AFS modules are found to be, 50.9% and 64.9% respectively, without any postprocessing.

Funder

Department of Information Technology, Ministry of Communications and Information Technology

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3