Lighting with paint

Author:

Pellacini Fabio1,Battaglia Frank2,Morley R. Keith2,Finkelstein Adam2

Affiliation:

1. Dartmouth College

2. Princeton University

Abstract

Lighting is a fundamental aspect of computer cinematography that involves the placement and configuration of lights to establish mood and enhance storytelling. This process is labor intensive as artists repeatedly adjust the parameters of a large set of complex lights to achieve a desired effect. Typical lighting controls affect the final image indirectly, requiring a large number of trials to obtain a suitable result.We present an interactive system wherein an artist paints desired lighting effects directly into the scene, and the computer solves for parameters that achieve the desired look. The artist can paint color, light shape, shadows, highlights, and reflections using a suite of tools designed for painting light. Our system matches these effects using a nonlinear optimizer made robust by a combination of initial estimates, system design, and user-guided optimization. In contrast, previous work on painting light has not permitted the lights to move, allowing for linear optimization but preventing its use in computer cinematography.To demonstrate our approach we lit several scenes, mainly using a direct illumination renderer designed for computer animation, but also including two other rendering styles. We show that painting interfaces can quickly produce high quality lighting setups, easing the lighting artist's workflow.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. View-Independent Adjoint Light Tracing for Lighting Design Optimization;ACM Transactions on Graphics;2024-05-22

2. Data-driven Digital Lighting Design for Residential Indoor Spaces;ACM Transactions on Graphics;2023-03-17

3. Photographic Lighting Design with Photographer-in-the-Loop Bayesian Optimization;The 35th Annual ACM Symposium on User Interface Software and Technology;2022-10-28

4. Targeting Shape and Material in Lighting Design;Computer Graphics Forum;2022-10

5. Cross-modal 3D Shape Generation and Manipulation;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3