An Effective Two-way Metapath Encoder over Heterogeneous Information Network for Recommendation
Author:
Affiliation:
1. Northwest Normal University, Lanzhou, China
2. Guangxi Normal University, Guilin, China
3. Guilin University of Electronic Technology, Guilin, China
Funder
Research Fund of Guangxi Key Lab of Multi-source Information Mining and Security
Research Fund of Guangxi Key Laboratory of Trusted Software
National Natural Science Foundation of China
Northwest Normal University Young Teachers Research Capacity Promotion Plan
Gansu Natural Science Foundation Project
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3512527.3531402
Reference24 articles.
1. Yuxiao Dong Nitesh V Chawla and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In KDD. 135--144. Yuxiao Dong Nitesh V Chawla and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In KDD. 135--144.
2. Shaohua Fan Junxiong Zhu Xiaotian Han Chuan Shi Linmei Hu Biyu Ma and Yongliang Li. 2019. Metapath-guided heterogeneous graph neural network for intent recommendation. In KDD. 2478--2486. Shaohua Fan Junxiong Zhu Xiaotian Han Chuan Shi Linmei Hu Biyu Ma and Yongliang Li. 2019. Metapath-guided heterogeneous graph neural network for intent recommendation. In KDD. 2478--2486.
3. Wenqi Fan Yao Ma Qing Li Yuan He Eric Zhao Jiliang Tang and Dawei Yin. 2019. Graph neural networks for social recommendation. In WWW. 417--426. Wenqi Fan Yao Ma Qing Li Yuan He Eric Zhao Jiliang Tang and Dawei Yin. 2019. Graph neural networks for social recommendation. In WWW. 417--426.
4. Tao-yang Fu Wang-Chien Lee and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In CIKM. 1797--1806. Tao-yang Fu Wang-Chien Lee and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In CIKM. 1797--1806.
5. Xinyu Fu , Jiani Zhang , Ziqiao Meng , and Irwin King . 2020 . MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In WWW. 2331--2341. Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In WWW. 2331--2341.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Target-driven user preference transferring recommendation;Expert Systems with Applications;2024-03
2. TGIE4REC: enhancing session-based recommendation with transition and global information;The Journal of Supercomputing;2024-01-29
3. KGCL: A Knowledge-enhanced Graph Contrastive learning framework for session-based recommendation;Engineering Applications of Artificial Intelligence;2023-09
4. GraphMetaP: Efficient MetaPath Generation for Dynamic Heterogeneous Graph Models;2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2023-05
5. Dual graph attention networks for multi-behavior recommendation;International Journal of Machine Learning and Cybernetics;2023-02-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3