Online Spatial-Temporal EV Charging Scheduling with Incentive Promotion

Author:

Ting Lo Pang-Yun1ORCID,Wang Huan-Yang1ORCID,Jhang Jhe-Yun1ORCID,Chuang Kun-Ta1ORCID

Affiliation:

1. National Cheng Kung University, Taiwan

Abstract

The growing adoption of electric vehicles (EVs) has resulted in an increased demand for public EV charging infrastructure. Currently, the collaboration between these stations has become vital for efficient charging scheduling and cost reduction. However, most existing scheduling methods primarily focus on recommending charging stations without considering users’ charging preferences. Adopting these strategies may require considerable modifications to how people charge their EVs, which could lead to a reluctance to follow the scheduling plan from charging services in real-world situations. To address these challenges, we propose the POSKID framework in this paper. It focuses on spatial-temporal charging scheduling, aiming to recommend a feasible charging arrangement, including a charging station and a charging time slot, to each EV user while minimizing overall operating costs and ensuring users’ charging satisfaction. The framework adopts an online charging mechanism that provides recommendations without prior knowledge of future electricity information or charging requests. To enhance users’ willingness to accept the recommendations, POSKID incorporates an incentive strategy and a novel embedding method combined with Bayesian personalized analysis. These techniques reveal users’ implicit charging preferences, enhancing the success probability of the charging scheduling task. Furthermore, POSKID integrates an online candidate arrangement selection and an explore-exploit strategy to improve the charging arrangement recommendations based on users’ feedback. Experimental results using real-world datasets validate the effectiveness of POSKID in optimizing charging management, surpassing other strategies. The results demonstrate that POSKID benefits each charging station while ensuring user charging satisfaction.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3